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We present a perturbation solution for a pressure-driven fluid flow in a rotating toroidal channel. The
analysis shows the difference between the solutions of full and simplified equations studied earlier. The result
is found to be reliable for low Reynolds number �Re�, as was the case for a previously studied solution for high
Re. The convergence conditions are defined for the whole range of governing parameters. The viscous flow
exhibits some interesting features in flow pattern and hydrodynamic characteristics.
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I. INTRODUCTION

Fluid flow in a general curved pipe is known not to be
one-dimensional since the pioneering work of Dean �1�. A
secondary flow develops when a fluid is driven by pressure
gradient in a toroidal channel. In practice, this occurs in
many applications: channels in industry, blood vessels in
physiology, transport pipe systems, coolant pipe systems, and
others. In a considerable number of studies, there has been a
strong motivation for finding a solution for flows in a curved
channel.

A stationary solution of the Navier-Stokes equation in a
curved pipe was first analyzed by the perturbation method
�1�. An analytical solution was obtained for a simplified
equation valid at a low value of the Dean number De
=Re �1/2. This solution was compared with the results of
direct numerical simulation for the wide range of governing
parameters �2�. The case of a rotating channel was first stud-
ied in �3�. Later many authors considered this problem using
different approaches. Pressure drop, heat, and mass transfers
were studied in detail �for review, see, e.g., �2��. Non-
Newtonian fluid flow in a curved pipe shows a specific be-
havior for different rheologic cases �see, e.g., �4� and refer-
ences therein�. Magnetic field induction was experimentally
studied in conductive fluid flow in toroidal channel �5�.

In this Brief Report, we derive a perturbation analytical
solution of the full equations taking into account all curva-
ture effects. It is shown that the well known solution �1�
corresponds to the case Re�1. In the general case, the so-
lution cannot be parametrized by the Dean number only. The
suggested solution properly describes the case of low Rey-
nolds number �Re� and asymptotically approaches the known
solution at high Re. For high viscosity of the fluid, the iner-
tial terms in the Navier-Stokes equation are relatively unim-
portant and the flow pattern is determined by a balance of
viscous forces and the pressure gradients in the fluid. Such
flows, called creeping flows, are of nearly the same impor-
tance in practice as the inertial flows �with Re�1�.

II. MATHEMATICAL MODEL

A curved pipe is considered as a toroidal channel with the
outer radius rc and radius of the inner circular section R. We
use a coordinate system �� ,� ,��, where � and � are polar
coordinates in the cross section and � is the linear coordinate

along the channel �see Fig. 1�. The torus revolves around its
main axis with a constant angular velocity � ���0 means
corotation with respect to the direction of the flow driven by
a pressure gradient�. The flow of an incompressible fluid in
the rotating channel is governed by the equations

�v

�t
+ v · �v = − 2� � v −

�p

�0
+ 	
v ,

� · v = 0 , �1�

where v is the velocity in the rotating frame of reference, �0
is the fluid density, and 	 is the kinematic viscosity.

After introducing the vorticity �=��v, pressure can be
eliminated. The resulting Helmholtz equation is written as

��

�t
+ �v · ��� − �� · ��v = − 2 � � �� � v� + 	
� .

�2�

Assuming that the flow is stationary and �-independent, Eqs.
�1� and �2� can be reduced to the equations for two scalar
functions: stream velocity v� and stream function �, which is
defined in such way that

�v�,v�,0� = � � ���̂� . �3�

The no-slip boundary conditions

�v���=1 = ����=1 = � ��

��
�

�=1
= 0 �4�

together with the regularity condition at the centerline must
be satisfied. Following arguments in �6�, we assume the pres-
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FIG. 1. The coordinate system in the toroidal channel.
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sure to be a linear function of �. Therefore, the pressure
gradient is constant along the channel.

Choosing V as the characteristic velocity, the inner radius
R as the characteristic length, and Q as the characteristic
pressure gradient, we introduce dimensionless variables �*

=� /R, �*=� /R, v
�
*=v� /V, �*=� / �VR�, and p*= pR /Q. The

following governing dimensionless parameters will be used:
curvature ratio �=R /rc, Reynolds number Re= �VR� /	, di-
mensionless angular velocity F= ��rc� /V, and pressure gra-
dient parameter G= �QR2� / ��0	V�, which is a ratio of the
viscous and pressure forces. r= ��−1−� cos �� is the dimen-
sionless distance from the torus axis.

Thus, the following set of equations describes the prob-
lem �the superscript “ *” is omitted everywhere below�:

�D��Drv� − Dr�D�v�� = 2�F	 cos �

�

��

��
+ sin �

��

��



+
G

r� Re
+

1

Re
Lv�, �5�

Drv�D̂�v� − D̂rv�D�v� + Dr�D̂�L� − D̂rL�D��

= 2�F	 cos �

�

�v�

��
+ sin �

�v�

��

 −

1

Re
L2� , �6�

while Eq. �3� in these coordinates leads to the expression for
the stream function,

v� = D�� =
� sin �

�−1 − � cos �
+

1

�

��

��
,

v� = − Dr� =
� cos �

�−1 − � cos �
−

��

��
. �7�

The remaining differential operators are

D̂r =
�

��
+

cos �

r
, D̂� =

1

�

�

��
−

sin �

r
, �8�


cyl =
�2

��2 +
1

�

�

��
+

1

�2

�2

��2 , �9�

L = 
cyl −
cos �

r

�

��
−

1

r2 +
sin �

�r

�

��
. �10�

The effect of curvature can be obtained after significant
simplification of the governing Eqs. �5� and �6�. The idea of
Dean �1� was to renormalize the stream function by a factor
of Re and combine factors Re �1/2 into the so-called Dean
number. The approximation ��1 is applied after that. Terms
with curvature ratio remain only in the first two advective
terms and the Coriolis force term in Eq. �6�. The limit �
�1 at fixed value De corresponds to the limit Re�1. A
perturbation solution of these simplified equations was recon-
sidered and compared with the results of direct numerical
simulations in �2�. We solve Eqs. �5� and �6� in general. This
means that the viscous term corresponding to the toroidal
Laplacian operator L �10� is not replaced by a cylindrical
one �9�. The term corresponding to the Coriolis force in Eq.

�5� remains. All curvature ratio contributions are kept in the
advective terms and pressure gradient.

III. PERTURBATION SOLUTION

Solution of Eqs. �5� and �6� can be expanded in power
series in a small parameter �,

v� = v�0���,�� + �v�1���,�� + �2v�2���,�� + ¯ , �11�

� = ��0���,�� + ���1���,�� + �2��2���,�� + ¯ . �12�

Expanding all operators �7�–�10� in the same series, we can
write the zero-order approximation of Eqs. �5� and �6� as

J�v�0�,��0�� =
G

Re
+

1

Re

cylv

�0�,

J�
cyl�
�0�,��0�� =

1

Re

cyl

2 ��0�, �13�

where J�A ,B� is the Jacobian of the functions A and B with
respect to � and �,

J�A,B� =
1

�
	 �A

��

�B

��
−

�B

��

�A

��

 . �14�

This gives a solution corresponding to cylindrical geometry,
namely to the Poiseuille flow

v�0� =
G

4
�1 − �2�, ��0� = 0. �15�

The first-order approximation leads to the system

J�v�1�,��0�� + J�v�0�,��1�� + ��0�v�0� �

�z
ln

v�0�

��0�

=
G

Re
� cos � −

1

Re

�v�0�

�r
+

1

Re

cylv

�1� + 2F
���0�

�z
,

�16�


cyl
2 ��1�

Re
= J�
cyl�

�0�,��1�� + J�
cyl�
�1�,��0��

+ 2�F + v�0��
�v�0�

�z
−

2

Re

�

�r

cyl�

�0� + J	 ���0�

�r
,��0�


+
����0�
cyl�

�0��
�z

�17�

and its solution gives the first-order correction,

v�1� =
3G cos �

16
��1 − �2� +

G3 Re2 cos �

737280
��1 − �2���6 − 9�4

+ 21�2 − 19� −
G2F Re2 cos �

18432
��1 − �2���4 − 3�2 + 3� ,

�18�
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��1� =
G2 Re sin �

4608
���2 − 4���2 − 1�2

−
GF Re sin �

192
���2 − 1�2. �19�

This solution is different from the solution obtained by �2�
�we denote the latter by superscript “c”�. The first-order so-
lution has an additional term,

v� − v�
�c� = �

3G cos �

16
��1 − �2� + O��2� . �20�

��1� has no difference from that in �2�. The corrections of the
second-order approximation v�2� and ��2� can be derived in a
similar way. For the stream function, we find

� − ��c� = − �2�2�1 − �2�2 sin 2�

92160
�150G Re F + G2 Re�56

− 17�2�� + O��3� . �21�

We note that � and Re cannot be combined �for instance, in
the Dean number� for parametrization of the present pertur-
bation solution; both should be treated as independent pa-
rameters.

IV. CONVERGENCE

It is clear that the perturbation solution is valid, i.e., that
the series converges, only at specific values of the governing
parameters Re, F, G, and �. The conditions on the governing
parameters have been defined in order to satisfy the uniform
convergence of the maximum value for each order of ap-
proximation.

All terms in the expressions for v�i� and ��i� have the form
�G Re� j�F Re�k /Re. So, for convergence analysis we use for
convenience the following values: G�=G Re and F�=F Re,
which are the only factors that influence the convergence.
The maximal powers of G� and F� included in v�i� grow as
2i+1 and i accordingly. However, these powers can be
reached only in different terms such as G�2i+1 and
G�i+1F�i /Re. So the radius of convergence should be
O�G�−2+G�−1F�−1�. We estimate the radius of convergence
�c with the following technique. A supposition of uniform
convergence necessarily implies a monotonic decrease of v�i�

majorants in Eq. �11�. In order to know this, we evaluate
terms up to fifth order, find the global maxima in the circle
�
1, and calculate the largest �, for which the maxima do
not increase.

Thus we obtain �c as a function of G� and F� �see Fig. 2�,
which is rather complex but displays some nice asymptotics.
For �F���1, we have obtained a dependence of the following
kind: a+b�F�−c�. As curve fitting has shown, the coefficients
a, b, and c are linear functions of G��1.
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FIG. 2. �Color online� The dependence of convergence radius on
F� for different values of G� �a� from 5 to 705 and �b� from 5 to
21 000.
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FIG. 3. �=0.5, Re=1, F=0. Comparison of solutions. �a� v�, �b�
v�

�c�, �c� �, �d� ��c�.
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FIG. 4. �Color online� Horizontal shift �m of the stream velocity
maximum vs Re at �=0.1. Dashed line stands for the solution v�

�c�.
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V. RESULTS

The solution was analyzed in detail in the earlier studies.
There the attention was centered on the case of large Re. Our
finding deals with the case of small Re when the viscous
term is comparable to or larger than the convective one. This
difference arises when new terms �20� and �21� in the solu-
tion �18� and �19� dominate, i.e., when Re is small.

One can see in Figs. 3�a� and 3�b� for the case F=0 and
small Reynolds number that the solution v�

�c� is almost axi-
symmetric but the new solution v� has nonaxisymmetric con-
tribution �20�. As a result of this, the stream velocity maxi-
mum is moved inwards. There is a similar difference
between stream functions �see Figs. 3�c� and 3�d��. This hori-
zontal shift �m is produced by pressure and viscous forces,
which are described by the first and the second terms on the
right-hand side of Eq. �16�. The centrifugal force starts to
play a role when Re gets large. The inertia effect �nonlinear
terms in Eqs. �16� and �17�� causes a shift of the stream
velocity maximum outwards. The dependence �m�Re� is
shown in Fig. 4. The offset between the two curves results
from the simplifications used in �2�, which are described in
the last paragraph in Sec. II.

When the torus rotates �F�0�, the Coriolis force gives
rise to additional vortices in the cross section. In the counter-
rotating case, such a vortex can act against the centrifugal
vortex. This produces a four-vortex picture �see Fig. 5�.
Again we see that the flow pattern is different for a low
Reynolds number. The vortex corresponding to the Coriolis
force arises at the boundary while ��c� starts to grow in the
center.

Axial shear-stress along the channel �=−�
�v�

�� ��=1 differs
from that presented in �2�. The first-order residual is
3 /16G��3�2−1�cos �. It does not change the pressure drop
but produces a strong variation �about 40%� of friction at the
boundary �see Fig. 6, thick curves�. There is a similar differ-
ence in the azimuthal shear stress ��=−�

�v�

�� ��=1. The second-
order residual is

�� − ��
c =

G Re�13G − 25��2 sin 2�

3840
. �22�

This work shows that solution of the full governing equations
reveals some specific features for flow in a toroidal channel:
a shift of the maximum of the stream velocity toward the
inner axis, the appearance of a second pair of vortices at the
internal boundary, and an additional � dependence of
stresses. These are prominent at low values of the Reynolds
number. The solution for a given curvature ratio � asymp-
totically approaches the known solution �2� at high Re.
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FIG. 5. �=0.5, Re=1, F=−0.63. Comparison of solutions. �a� �,
�b� ��c�.
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FIG. 6. �Color online� Axial shear stress � �bold lines, tick labels
at left� and azimuthal shear stress �� �thin lines, tick labels at right�
dependencies on angle. Dashed lines correspond to the solution in
�2�. �=0.4, Re=10, F=−0.49.
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